List of Symbols

Miscellany

; mm	Equal by definition
0	End of proof
[x]	Smallest integer greater than or equal to x
$(x)^+$	Maximum of 0 and x

Sets

Ø	Empty set
[a, b]	Half open interval $\{x \in \mathbb{R} \mid a \le x < b\}$
	Cardinality of finite set X
$B_{\epsilon}(S)$	Ball of radius $arepsilon$ around S in \mathbb{R}^{n+2}
l	Line segment in \mathbb{R}^{n+2}
\mathbb{N}	Set of all positive integers
\mathcal{O}	Landau's symbol
$\mathbb{P}(X)$	Power set of set X
R	Set of all real numbers
R ⁿ	Set of all <i>n</i> -tuples of real numbers
$\mathbb{R}_{\geq 0}$	Set of all nonnegative real numbers
$X \subset Y$	X is proper subset of Y
$X \subseteq Y$	X is subset of Y
$X \setminus Y$	Difference of sets X and Y
X in Y	Intersection of sets X and Y
$X\cup Y$	Union of sets X and Y
Z	Set of all integers
$\mathbb{Z}_{\geq 0}$	Set of all nonnegative integers

Projects and project activities

b_i	Activity calendar for activity i
$b_{i,j}$	Time lag calcudar for arc (i, j)
$\frac{d_{ij}^{max}}{d_{ij}^{min}}$	Maximum time lag between the starts of activities i and j
d_{ij}^{min}	Minimum time lag between the starts of activities i and j
\overline{d}	Prescribed maximum project duration

182	List of Symbols
m_i	Execution mode for activity i
\mathcal{M}_i	Set of alternative execution modes for activity i
p_i	Duration (processing time) of activity i
p_{im_i}	Duration of activity i in execution mode m_i
ϑ_{ij}^{\star}	Sequence-dependent change over time from activity i to activity j on resource k
V	Set of all activities
$V^a \subset V$	Set of all real activities
$V^e \subseteq V$	Set of all fictitious activities (events)
V_k^a	Set of all real activities using renewable resource k
V_k^e	Set of all events depleting cumulative resource k
$V^{e} \subseteq V$ V^{a}_{k} $V^{e^{-}}_{k}$ $V^{e^{+}}_{k}$	Set of all events replenishing cumulative resource \boldsymbol{k}
Directed g	raphs and networks
D	Distance matrix for project network N
d_{ij}	Length of a longest directed path (distance) from node i to node j
2	in project network N
δ_{ij}	Weight of arc (i, j)
$\delta_{im_ijm_j}$	Weight of arc (i, j) for mode combination (m_i, m_j)
E	Arc set of project network N
G = (V, E)	Directed graph with node set V and arc set E
$G \coloneqq (V, E, \delta)$) Weighted directed graph (network) with node set V , arc set E ,

-	and have an brogene more an
G = (V, E)	Directed graph with node set V and arc set E
$G \coloneqq (V, E, \delta)$.	Weighted directed graph (network) with node set V , arc set E
	and vector δ of arc weights
(i, j)	Are with initial node i and terminal node j
m = E	Number of arcs in project network N
n + 2 = V	Number of nodes in project network N
N	Project network
Pred(i)	Set of all direct predocessors of node $i \in V$
Succ(i)	Set of all direct successors of node $i \in V$

V Node set of project network N

Resources

F	Forbidden set of activities
F	Set of all minimal forbidden sets
\mathcal{F}_{k}^{+}	Set of all minimal k-surplus sets
$rac{\mathcal{F}_k^+}{\mathcal{F}_k^-}$	Set of all minimal k-shortage sets
?'ik	Requirement of activity i for resource k
rikani	Requirement of activity i for resource k in execution mode m_i
$r_k(S, \cdot)$	Loading profile for resource k given schedule S
R_k	Capacity of renewable resource k or availability of nonrenewable
	resource k
\underline{R}_{k}	Safety stock of cumulative resource k
$\frac{R_k}{R_k}$	Storage capacity of cumulative resource k
$\hat{\mathcal{R}^{\gamma}}$ $\tilde{\mathcal{R}}^{\gamma}$	Set of all (discrete) cumulative resources
$\widetilde{\mathcal{R}}^{\gamma}$	Set of all continuous cumulative resources
\mathcal{R}^{ν}	Set of all nonrenewable resources
$\mathcal{R}^{ ho}$	Set of all renewable resources

Objective functions

α	Continuous interest rate
c_i^f	Cash flow associated with the start of activity i
c_k	Per unit cost for resource k
$\partial^+ \tilde{f} / \partial S_i(S)$	Left-hand S_i -derivative of \overline{f} at S
$\partial^{+}\bar{f}/\partial S_{i}(S)$	Right-hand S_i -derivative of \ddot{f} at S
$f:\mathcal{S}_T o\mathbb{R}$	Objective function to be minimized
$ ilde{f}: C woheadrightarrow \mathbb{R}$	Continuation of objective function f
$\varphi: \mathcal{S}_T \to X$	C^1 -díffeomorphism
$\nabla \overline{f}(S)$	Derivative of \overline{f} at S
$ abla^{-}ar{f}(S)$	Left-hand derivative of \overline{f} at S
$\nabla^+ \overline{f}(S)$	Right-hand derivative of \overline{f} at S
$d\bar{f} _{S}(z)$	Directional derivative of \overline{f} at S in direction z
w_i	Weight of activity i
w_i^e, w_i^t	Earliness and tardiness costs for activity i per unit time
w_i^f	Weight of free floats for activity i

Relations and preorders

$cr(\theta)$	Covering relation of strict order θ
$D(\rho)$	Distance matrix for relation network $N(\rho)$
d_{ii}^{ρ}	Distance from node i to node j in relation network $N(\rho)$
${d_{ij}^ ho\over\delta_{ij}^ ho}$	Weight of arc (i, j) in relation network $N(\rho)$
$G(\theta)$	Precedence graph of strict order θ
MFR	Set of all ⊆-minimal feasible relations
$\min \mathcal{M}$	Minimal point of ordered set (\mathcal{M},\leq) with $\mathcal{M}\subseteq \mathbb{R}^{n+2}$
$N(\rho)$	Relation network belonging to relation ρ
$Pred^{\theta}(i)$	Set of all predecessors of i in preorder θ
ρ, ρ	Relation in set V
SIO	Set of all schedule-induced strict orders in set V^a
SIP	Set of all schedule-induced reflexive preorders in set V^e
$S_T(\rho)$	Relation polytope of relation $ ho$
$\mathcal{S}_T^{=}(heta)$	Equal-preorder set of preorder θ
tr(ho)	Transitive hull of relation ρ
θ	Strict order in set V^a or reflexive preorder in set V^a
$\theta(S)$	Schedule-induced preorder
$\Theta(D)$	Strict order in set V^a or reflexive preorder in set V^e induced distance matrix D

Schedules

AS	Set of active schedules
ES	Earliest schedule
LS	Latest schedule
PSS	Set of all pseudostable schedules
QAS	Set of all quasiactive schedules
QSS	Set of all quasistable schedules
S	Schedule
S	Set of all feasible schedules

by

184	List of Symbols
\mathcal{S}_{C}	Set of all resource-feasible schedules with respect to cumulative resources
\mathcal{S}_R	Set of all resource-feasible schedules with respect to renewable re- sources
$\frac{S_T}{SS}$	Set of all time-feasible schedules Set of all stable schedules

Temporal scheduling

C_{i}	Completion time of activity i
d_{ij}	Induced minimum time lag between the starts of activities i and j
$\dot{EC_i}$	Earliest completion time of activity i
EFF_i	Early free float of activity i
ES_i	Earliest start time of activity i
LC_i	Latest completion time of activity i
LFF_i	Late free float of activity i
LS_i	Latest start time of activity i
S_i	Start time of activity <i>i</i>
TF_i	Total float of activity i

Resource allocation

\mathcal{A}	Maximal feasible set
$\mathcal{A}(S,t)$	Active set at time t given schedule S
B	Mínímal delaying alternative
\mathcal{B}	Set of all minimal delaying alternatives
C	Set of all activities scheduled
C'	Set of all activities shifted
\mathcal{C}	Set of candidate schednles
\mathcal{D}_{j}	Set of all tentative start times for activity j (decision set)
G	Spanning forest of project network N with arc set $E_{\rm G}$
g(z)	Directional derivative of \overline{f} at iterate S in direction z
lb	Lower bound on minimum objective function
\mathcal{P}	Search space
σ	Stepsize
u, v	Emmeration nodes
$w_k(a,b)$	Workload for renewable resource k in time interval $[a, b]$
\mathcal{X}	Full mode assignment
Ľ	Partial mode assignment
z	Steepest descent direction